高考数学必背公式整理(高考必考的数学公式)
本文目录
高考必考的数学公式
高考必考的数学公式如下:
1、三角函数公式: sin²θ + cos²θ = 1 tanθ = sinθ/cosθ。
2、角度制和弧度制之间的转换: 角度制 = 弧度制 × 180/π 弧度制 = 角度制 × π/180。
3、圆与圆周的关系: 圆的面积:S=πr² 圆的周长:C=2πr 弧长公式:L = θ/2π × 2πr = θr (其中θ是圆心角的弧度值)。
4、三角形面积公式: 面积公式:S = 1/2 × 底 × 高 海龙公式:S= √,其中p=(a+b+c)/2。
5、平面几何公式: 两点间距离公式:d = √ 中点公式:(X,Y)=((x1+x2)/2,(y1+y2)/2) 垂直平分线公式:Ax + By + C = 0 (其中A、B、C由中点(X,Y)和给定点(x1,y1)可计算得到)。
6、等差数列和等比数列公式: 等差数列通项公式:an = a1 + (n-1)d 等差数列前n项和公式:Sn = n/2(a1 + an) 等比数列通项公式:an = a1 × q^(n-1) 等比数列前n项和公式:Sn = (a1 × (1-q^n))/(1-q)。
注意事项
1、熟练运用基本概念和公式:高考数学试题通常涉及较多的公式和基本概念,考生需要熟练掌握并能够快速准确地应用。
2、熟悉图表的阅读及推断能力:数学高考试题涉及较多的图表和数据,考生需要具备熟悉和快速阅读、理解和推断数据的能力。
3、稳定心态,避免紧张和慌乱:数学高考试题较为复杂,需要考生在考场内保持稳定的心态,避免因紧张、慌乱等因素影响答题效果。
4、善于应用数学思维:数学高考试题往往涉及到一些抽象的问题,需要考生具备良好的数学思维和创新精神,善于从多个角度解决问题。
5、精细化答题思路和方法:数学高考试题解题过程中需要考生精细化思路和方法,想到什么就选什么、错了就改正、不偏不倚地回答试题。
高考必备数学公式
高考必备数学公式:
1、三角函数:sin(a+b)=sin(a)cos(b)+cos(a)sin(b)、cos(a+b)=cos(a)cos(b)-sin(a)sin(b)、tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))、sin^2(a)+cos^2(a)=1、1+tan^2(a)=sec^2(a)、1+cot^2(a)=csc^2(a)
2、平面几何:勾股定理:a^2+b^2=c^2、圆的面积:S=πr^2、圆的周长:C=2πr、正方形的面积:S=a^2、矩形的面积:S=长×宽、平行四边形的面积:S=底边×高、梯形的面积:S=1/2×(上底+下底)×高、三角形的面积:S=1/2×底边×高或者海龙公式:S=sqrt,其中,p=(a+b+c)/2
3、解析几何:两点间距离公式:d=sqrt、点到直线距离公式:d=|Ax+By+C|/sqrt(A^2+B^2),其中 | | 表示绝对值、平面曲线极坐标方程:(x,y)=(rcosθ,rsinθ)
4、概率论:乘法公式:P(A∩B)=P(A)×P(B|A)、加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)、全概率公式:P(B)=∑P(Ai)×P(B|Ai),其中,Ai是样本空间的划分、贝叶斯公式:P(B|A)=P(A|B)×P(B)/P(A),其中,P(B)是先验概率,P(A)和P(A|B)是后验概率
数学高考做题技巧
1、认真审题:在考试中,一定要认真审题,对于不懂的词汇或概念,可结合前后文理解或求助老师。在做题之前,一定要理解题目的意思,抓住重点,并阅读题目中的条件和要求,以此正确解题。
2、要分类讨论:在解题过程中,如遇到问题不是一步就能解答的,可以通过分类讨论的方式,对原题进行分拆,例如把问题一分为二,进行逐步推导,这样可以减少答错的概率。
3、掌握公式和技巧:高考数学考试中需要运用很多公式和技巧,在平时复习时一定要把它们掌握,例如完成三角函数类的题目,首先需要掌握三角函数的定义和性质,以此来实现正确解答。
4、要多练习:做高考数学题的技巧是积累的,因此,认真完成老师布置的作业,多做模拟题和历年真题,可以增强做题的信心和耐力,锻炼做题的速度和准确性。
5、勇于放弃:在考试过程中,有些题目难度过大或因为个人知识储备不足而无法解答,这时就要及时放弃,不要浪费时间影响后续的答题,要合理安排时间,优先解答易解和得分高的题目。
八个必背的泰勒公式
八个必背的泰勒公式如下:
一、八个必背的泰勒公式
1、sin x=x-1/6*x^3+O(x^3)
2、arcsin x=x+1/6*x^3+O(x^3)
3、cos x=1-1/2*x^2+x^4/4!+O(x^4)
4、ln (1+x)=x-1/2x^2+1/3x^3+O(x^3)
5、arccos x=x-1/2x^2+1/4x^4+O(x^4)
6、arctan x=x-1/3*x^3+O(x^3)
7、e^x=1+x+x^2/2!+x^3/3!+O(x^4)
8、(1+x)^α=1+αx+α(α-1)/2!x^2+α(α-1)*(α-2)/3!*x^3+O(x^4)
二、泰勒公式
泰勒公式是一个数学概念,它表示一个多项式函数在某个点处的值可以用该函数在该点处的导数和更高阶的导数表示出来。
具体来说,对于一个函数f(x),如果在点a处有n阶导数,那么f(x)可以写成:f(x)=f(a)+f’(a)(x−a)+f’’(a)(x−a)2+...+f^(n)(a)(x−a)n+Rn(x)。其中Rn(x)是余项,表示当x趋于a时,f(x)和前面的n项多项式的差。
泰勒公式的应用:
1、近似计算:
当需要计算复杂的数学函数时,泰勒公式提供了一种有效的近似方法。通过选择一个合适的点作为中心点,利用泰勒级数展开函数,可以得到函数在该点附近的近似值。这种近似方法在科学计算、工程和数值分析等领域中非常常见。
2、级数展开:
泰勒公式是函数展开成幂级数的工具。通过泰勒公式,可以将一个函数表示为一个无穷级数,这有助于理解函数的性质和行为。此外,利用泰勒级数,可以进一步研究函数的可微性、可积性等性质。
3、求解微分方程:
在求解微分方程时,泰勒公式可用于构造近似解。对于一些难以直接求解的微分方程,可以利用泰勒级数展开来构造方程的近似解。这种方法在数值分析中被称为数值微分或差分法。
4、判断函数的性质:
通过泰勒公式,可以进一步了解函数的性质和行为。例如,利用泰勒展开式可以判断函数的奇偶性、周期性以及单调性等性质。同时,泰勒公式还可以用于研究函数的极限行为和收敛性等数学问题。
高考数学概率公式
高考数学概率公式如下:
1、事件的概率公式
P(A)=n(A)/n(S),其中n(A)表示事件A发生的可能性,n(S)表示样本空间的总数。
2、条件概率公式
P(A|B)=P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
3、全概率公式
P(A)=ΣP(A|Bi)×P(Bi),其中Bi表示样本空间的一组互不相交的事件,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率。
4、贝叶斯公式
P(Bi|A)=P(A|Bi)×P(Bi)/ΣP(A|Bj)×P(Bj),其中P(Bi|A)表示在事件A发生的条件下事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,ΣP(A|Bj)×P(Bj)表示全概率。
概率的基本性质:
1、必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1。
2、当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B)。
3、若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)。
4、互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:
(1)事件A发生且事件B不发生。
(2)事件A不发生且事件B发生。
(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生。
高考必备数学基本公式
高考必备数学基本公式如下:
一、数学两角和公式
1、sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
2、cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
3、tan(A+B)=(tanA+tanB)(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
二、数学椭圆公式
1、椭圆周长公式:1=2πb+4(a-b)。
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
3、椭圆面积公式:s=πab。
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
三、倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
高考常用数学公式
高考常用数学公式
一、两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb。
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)。
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
二、倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga。
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
三、半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)。
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))。
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))。
四、和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)。
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)。
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)。
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb。
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb。
五、抛物线
1、抛物线:y=ax_bx+c就是y等于ax的平方加上bx再加上c。
a》0时,抛物线开口向上;a《0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。
更多文章:

长春工程学院很不好吗(长春工程学院总体怎么样,有什么好专业,就业前景怎么样)
2025年2月22日 12:00

郴州事业单位招聘(2023湖南郴州嘉禾县属事业单位招聘岗位要求)
2025年2月25日 03:20

江西省财经大学2022录取分数线(江西财经大学分数线2022)
2025年3月1日 02:10

计算机二级office软件(计算机二级是用什么版本的word)
2025年2月17日 10:50

苏州科技大学研究生院官网研招网(苏州科技大学研究生各专业招生人数)
2025年3月1日 18:30

社区招聘考试笔试内容(社区工作者考试内容是什么好考吗考几门呀)
2025年3月7日 04:40